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The asymmetric formation of a quaternary carbon represents one
of the most difficult challenges in asymmetric catalysis.1 Perhaps
the most successful strategy is the use of asymmetric copper
catalysts; especially with respect to conjugate additions involving
nonstabilized nucleophiles.2 This problem is further aggravated
when an adjacent tertiary center must be formed asymmetrically
concurrently. Creating such molecular complexity in a single step
is a daunting challenge. Our recent success in accomplishing this
in Pd-catalyzed allylation of enolates3 with meso-like 1,3-disub-
stituted allyl electrophiles encouraged us to question whether
monosubstituted allyl electrophiles may be employed to give
products of attack at the more substituted allyl terminus to give
the branched product. For a process of this kind, molybdenum
catalysis4 appears more appropriate; however, the large steric
demand of a fully substituted enolate would clearly stress this
regioselectivity issue. In this communication, we describe the
alkylation of the anions of 3-aryloxindoles with monosubstituted
allyl carbonates in the presence of a chiral molybdenum catalyst.
The products of this reaction, containing highly functionalized chiral
oxindoles, should provide new avenues toward asymmetric prepara-
tions of biologically important indole alkaloids.5

Initial optimization was focused on theN-Boc-3-phenyloxindole
(1a) as the nucleophile. However, a modest regio- and diastereo-
selectivity were obtained (Table 1, entry 1). The use of slightly
less stabilizedN-alkyloxindoles (entries 2-4) improved the selec-
tivity, especially the regioselectivity of the reaction, dramatically.
The steric size of the N-protecting group does not seem to be
important as methoxymethyl (entry 2), benzyl (entry 3), and methyl
(entry 4) gave essentially identical results. An interesting trend
emerged, however, when we systematically modified the electronics
of the 3-aryl substituents on the oxindoles (entries 4-9). The regio-
and diastereoselectivity of the reaction significantly decreased as
more electron-withdrawingpara-substituents were placed on the
phenyl ring (entries 5-7). Electron-donating groups (entries 8 and
9), however, had little effect on the selectivity.6 In all cases, the ee
and yield of the reaction showed little sensitivity to the electronic
variations.

To determine the steric effects of the nucleophiles, we examined
the reactions with several sterically distinct oxindoles (Table 1,
entries 10-20). At the outset, we expected that, for steric reasons,
smaller nucleophiles would be more selective toward bond forma-
tion at the more hindered internal position of theπ-allyl, compared
to more bulky ones. In contrast to this expectation, the bulky 2-tolyl
and 1-naphthyl substituted oxindoles gave excellent selectivity
(entries 10 and 11), while the smaller thienyl, indolyl, and thiazoyl
substituted ones gave exclusively linear products (entries 13-15).
Interestingly, installing extra steric bulk on these heterocycles
reversed the regioselectivity to give branched products with
excellent diastereo- and enantioselectivity (entries 16-19). Curi-
ously, aN-tosyl substituted 3-indolyloxindole also gave very high

b/l selectivity (entry 20). It is worth noting that bulkier oxindoles
also gave better diastereoselectivity (entry 10 vs 4, entry 11 vs 12).

The trends observed in the above electronic and steric studies
are rationalized by a reaction mechanism involving divergent
reaction modes of O-bound and C-bound molybdenum enolate
complexes (Figure 1), both of which have been structurally
characterized.8-10 Electronic and steric variations of the nucleophile
may influence the equilibrium ratios of the two enolate isomers
and which isomer reacts to give the product.11 Sterically, a larger
aryl group should disfavor the crowded C-bound enolate and favor
the O-bound enolate structure. In this case, the lower steric strain
allows the more substituted allyl terminus to bond to the sp2 carbon
of the enolate to form the normally preferred branched product via
a favorable “Claisen-like” transition state.12 On the other hand, the
more compact five-membered heterocycle substituted oxindoles
should accommodate the C-bound enolate more readily. The steric
crowding of a reductive elimination to a quaternary sp3 center only
allows bonding to the less hindered primary allyl terminus in this

Table 1. Steric and Electronic Effects for the Mo-AAA Reaction
with 3-Aryloxindolea

entry Ar R b/l dr eeb yieldc

1 Ph (1a) Boc 5:1 5:1 93% 91%
2 Ph (1b) MOM 19:1 7:1 92% 90%
3 Ph (1c) Bn 17:1 9:1 90% 85%
4 Ph (1d) Me 18:1 8:1 92% 88%
5 4-F-Ph (1e) Me 16:1 6:1 91% 90%
6 4-Cl-Ph (1f) Me 13:1 5.5:1 95% 88%
7 4-CN-Ph (1g) Me 7:1 4.5:1 89% 84%
8 4-MeO-Ph (1h) Me 18:1 8:1 92% 92%
9 4-NMe2-Ph (1i) Me 17:1 6:1 92% 87%

10 2-Me-Ph (1j) Me 17:1 19:1 94% 90%
11 1-naphthyl (1k) Me 15:1 19:1 95% 88%
12 2-naphthyl (1l) Me 15:1 6:1 90% 90%
13 2-thiophyl (1m) Me 0:1 - 0% 90%
14 N-Me-3-indolyl (1n) Me 0:1 - - 82%
15 2-Ph-5-thiazoyl (1o) Bn 0:1 - - 86%
16 3-Me-2-thiophyl (1p) Me 11:1 19:1 92% 95%
17 N-Me, 2-Ph-3-indolyl (1q) Me 9:1 19:1 94% 65%
18 2,4-dimethyl-5-thiazoyl (1r) Me 2.5:1 19:1 92% 84%
19 2,4-diphenyl-5-oxazoyl (1s) Me 16:1 19:1 96% 83%
20 N-tosyl-3-indolyl (1t)7 Me 10:1 19:1 97% 63%
21d 1r Me 16:1 19:1 93% 86%
22d 1g Me 18:1 4:1 92% 85%

a Reaction performed with Mo(C7H8)(CO)3 (10 mol %), ligandL1 (15
mol %), and oxindoles/cinnamyltert-butyl carbonate/base (1/1.1/1:1) at
60 °C in THF. b Determined by chiral HPLC.c Isolated yields of allylated
oxindoles.d Reaction performed with ligandL2.
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case. Electronically, electron-withdrawing 3-aryl substituents should
stabilize both enolate complexes and slow down their interconver-
sion.13,14 Hence, we see a partial linear relationship between the
electronic property of thepara-substituent and the regioselectivity
of the reaction.6 Furthermore, a more electron-rich molybdenum
should disfavor the reductive elimination and promote the equilibra-
tion between the two isomers. On the basis of this hypothesis, the
electron-rich bismethoxypyridine ligand should move toward a
Curtin-Hammett-type situation and favor reductive elimination via
the less hindered O-bound enolate to give the branched product as
observed (entry 22 vs 7, entry 21 vs 18).15

Several other aromatic, heteroaromatic, and polyenyl carbonates
also functioned well with oxindole1d (Table 2). The reaction is
tolerant of a number of functional groups on the electrophile, and
good to excellent selectivity is observed for all substrates.

The relative and absolute stereochemistry was established by
X-ray crystallographic analysis of the product of entry 16 as shown
in Figure 2. Between the two depicted paths, path A is clearly
favored as the least sterically demanding in the transition state. This
stereochemical outcome is also consistent with our previous reports.4

In conclusion, we have reported a molybdenum-catalyzed allylic
alkylation reaction with oxindoles that proceeds with high regio-,
diastereo-, and enantioselectivity. The products of this reaction,
containing a quaternary center at the 3 position of the oxindole as
well as a vicinal tertiary center that are difficult to access via other
methods, are well suited for further elaborations toward indole
alkaloids. The correlation between the electronics and sterics of

the nucleophile and the regio- and diastereoselectivity of the reaction
is highly unusual and provides the exciting prospect that, by careful
tuning of the nucleophile, great regio- and diastereocontrol of the
reaction can be exercised. The preference for bond formation at
the more substituted position of theπ-allyl with even extremely
bulky nucleophiles is also noteworthy.
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Figure 1. Mo enolate structures.

Figure 2.

Table 2. Variation of the Electrophiles

entry R b/l dr ee yield

1 3,4Cl2C6H3 (a) 6:1 5.5:1 89% 87%
2 4-OTBSC6H4 (b) 19:1 8:1 89% 90%
3 2-furyl (c) 12:1 6:1 91% 92%
4 2-thiophyl (d) 13:1 8:1 90% 88%
5 2-NHBocC6H4 (e) 19:1 19:1 93% 89%
6 2-(E)-butene (f) 6:1 6:1 91% 84%
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